The Line Element is 
|  | (1) | 
 
so the Arc Length between the points  and
 and  is
 is
|  | (2) | 
 
and the quantity we are minimizing is 
|  | (3) | 
 
Finding the derivatives gives
and
so the Euler-Lagrange Differential Equations become
These give
|  | (10) | 
 
|  | (11) | 
 
Taking the ratio,
|  | (12) | 
 
|  | (13) | 
 
| ![\begin{displaymath}
y'^2={c_1}^2\left[{1+y'^2+\left({{c_2\over c_1}}\right)^2 y'^2}\right]= {c_1}^2+y'^2({c_1}^2+{c_2}^2),
\end{displaymath}](p2_916.gif) | (14) | 
 
which gives
|  | (15) | 
 
|  | (16) | 
 
Therefore,  and
 and  , so the solution is
, so the solution is
| ![\begin{displaymath}
\left[{\matrix{x\cr y\cr z\cr}}\right]=\left[{\matrix{x\cr a_1x+a_0\cr b_1x+b_0\cr}}\right],
\end{displaymath}](p2_921.gif) | (17) | 
 
which is the parametric representation of a straight line with parameter 
![$x \in [x_1,x_2]$](p2_922.gif) .  Verifying the Arc Length gives
.  Verifying the Arc Length gives
|  | (18) | 
 
where
| ![\begin{displaymath}
\left[{\matrix{y_1\cr y_2\cr}}\right] = \left[{\matrix{x_1 & 1\cr x_2 & 1\cr}}\right]\left[{\matrix{a_1\cr a_0\cr}}\right]
\end{displaymath}](p2_924.gif) | (19) | 
 
| ![\begin{displaymath}
\left[{\matrix{z_1\cr z_2\cr}}\right] = \left[{\matrix{x_1 & 1\cr x_2 & 1\cr}}\right]\left[{\matrix{b_1\cr b_0\cr}}\right].
\end{displaymath}](p2_925.gif) | (20) | 
 
See also Point-Point Distance--1-D, Point-Point Distance--2-D,
Point-Quadratic Distance
© 1996-9 Eric W. Weisstein 
1999-05-25